
Emittance oscillation in the drift space of split photoinjectors

Chun-xi Wang∗

Argonne National Laboratory, 9700 South Cass Avenue, IL 60439

(Dated: December 15, 2005)

Emittance oscillation in the drift of split photoinjectors has a “double-minimum” feature, which
has been used for optimizing the working point of split photoinjectors. To better understand this
feature, approximate emittance expression is derived based on beam spreading and compared with
simulations. A general formula for the perturbative rms emittance calculation was derived.

I. INTRODUCTION

In split photoinjectors there is a long drift between
a short gun and a booster. The beam out of the gun
is focused. It reaches a waist in the drift and then di-
verges due to space-charge defocusing. During the op-
timization of the Linac Coherent Light Source (LCLS)
photoinjector, it was found that the emittance has an
interesting “double minimum” feature in the drift, while
the local emittance maximum more or less coincides with
the beam waist [1]. This special location has been cho-
sen as the new working point for the LCLS photoinjector,
where the beam is matched into a booster, shifting the
second emittance minimum to a sufficiently high energy.

There were some efforts to explain such an emittance
oscillation in drift space based on the familiar emittance
oscillation around the invariant envelope [2, 3]. However,
the existence of invariant envelopes requires external fo-
cusing to balance the space-charge defocusing. Thus, in
free-drift regions, there is no invariant envelope and an
alternative treatment is needed. In this note, I will show
that the main feature of emittance oscillation in the drift
space can be explained by beam spreading of individual
longitudinal slices in free space.

In order to compute the emittance analytically, a gen-
eral perturbative emittance formula is derived, which
should be useful for other applications involving the emit-
tance calculation.

II. REVIEW OF BEAM SPREADING DUE TO

SPACE CHARGE

In drift regions, the transverse envelope of a cylindrical
beam is governed by the simple envelope equation [4, 5]

σ̂′′

r − κs

β2
rγ2

r

1

σ̂r
= 0, (1)

where σ̂r =
√

βrγrσr is the reduced beam envelope, κs

is the beam perveance, and βrγr is the relativistic factor
of the reference particle. A prime symbol means differ-
entiation with respect to the longitudinal coordinate s.
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Assuming negligible perveance variations, the envelope
equation can be normalized into a universal form

τ ′′ − 1

τ
= 0, with τ =

σ̂r√
κs/βrγr

. (2)

This equation can be obtained from the Hamiltonian H =
p2

τ/2− ln τ , which obviously is a constant of motion and
thus yields

τ ′2 = τ ′

0
2 + 2 ln

τ

τ0

, (3)

where τ0 and τ ′

0 are the initial values. The envelope can
thus be written as

τ = τ0 exp

(
τ ′2 − τ ′

0
2

2

)
= τw eτ ′2/2, (4)

which grows symmetrically away from a waist τw =

τ0e
−τ ′

0

2/2 located at τ ′ = 0. Equation (3) can be further
integrated, using the waist as the origin for simplicity, as

∆s√
2 τw

= ±
∫ τ

τw

1

dx

2
√

lnx
, (5)

which can not be expressed with elementary functions.
Approximate expressions can be obtained by expanding
1/

√
lnx around x = 1 and by term-by-term integration,

which gives
√

τ/τw − 1+(1/12) (τ/τw − 1)
3/2

+ · · · . The
leading term yields the familiar quadratic envelope [5]

τ

τw
≃ 1 +

(
∆s√
2 τw

)2

. (6)

A much better approximation can be obtained by keeping
up to the second order of τ/τw − 1 in ∆s2, which yields

τ

τw
≃ 3

√

1 +

(
∆s√
3 τw

)2

− 2. (7)

Setting ∆s = s − sw with

sw = ± τw

∫ τ0/τw

1

dx√
2 lnx

≃ ± τw

√
(τ0/τw + 2)2

3
− 3 ,

(8)
the origin shifts from the waist to arbitrary initial val-
ues τ0 and τ ′

0, where the sign is chosen according to the
opposite sign of τ ′

0. Figure 1 shows the beam spreading
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FIG. 1: Beam spreading curve in drift space. The red line is
the exact result. The blue line is the quadratic approximation.
The green line is the better approximation given in Eq. (7).

curve and the approximations given in Eqs. (6) and (7).
In a typical split photoinjector, the maximum beam size
in the drift is several times the size of the beam waist,
thus Eq. (7) is more adequate to use.

The beam spreading discussed above describes approx-
imately the evolution of each longitudinal slice in the drift
space. Due to variations in slice perveance, initial posi-
tion, and initial momentum, etc., each slice has a slightly
different envelope determined by their initial values of
τ0 and τ ′

0. From the envelopes of all the slices, bunch
emittance can be computed. To avoid the unknown slice
perveance distribution over the bunch, we will work in
the τ -space instead of the σ̂-space, which is sufficient for
understanding the emittance oscillation.

III. EMITTANCE CALCULATION FORMULA

To obtain the rms emittance of a bunch, the following
expression needs to be calculated:

ǫ =

√
X2 P 2 − XP

2
, (9)

where X and P are coordinate and momentum, respec-
tively. An overbar means averaging over the particles.
For our purpose here, X and P stand for σ̂ and σ̂′, or
τ and τ ′. Although easy to compute numerically, this
emittance expression is rather difficult to manipulate an-
alytically. Here we derive an emittance formula assum-
ing that X and P vary around their averages, depend-
ing linearly on a set of uncorrelated small deviations qα

in some variables (initial conditions, fluctuating parame-
ters, etc.), i.e.,

(
X
P

)
=

(
X̄
P̄

)
+

∑

α

(
∂qαX̄
∂qα P̄

)
qα , (10)

with q̄α = 0 and qαqβ = 0 for α 6= β. Then
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∣∣∣∣∣

=
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∣∣∣∣

=
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∥∥∥ =
∑
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)2

=
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(
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)
,(11)

where X̂ is the vector (X̄, (∂q1X̄)q1
rms, · · · ), and similarly

for P̂ . A pair of vertical bar stands for the determinant.
Note that the second-to-last step is the Lagrange’s Iden-

tity, which gives the residual of the well-known Cauchy-

Schwarz inequality.
Now let us connect this emittance formula to expres-

sions used in the literature. Apply this formula to the
emittance of a bunch whose slices’ envelopes σ̂ and σ̂′

depend on current; then we have

ǫ = |σ̂∂I σ̂
′− σ̂′∂I σ̂|Ip

δ̂I = σ̂(Ip)
2

∣∣∣∣
∂

∂I

(
σ̂′

σ̂

)∣∣∣∣
Ip

δ̂I, (12)

where δ̂I stands for the standard deviation from Ip. This
is the expression given in Eq. (2.8) of [3] (except for mi-
nor differences that might be due to typos or different
definitions). Another commonly used expression is the
two-slice emittance

ǫ =
1

2

∣∣ σ̂+σ̂′

−
− σ̂−σ̂′

+

∣∣ =
βγ

2

∣∣ σ+σ′

−
− σ−σ′

+

∣∣ , (13)

which is the same as the previous expression provided
that we let σ̂+ = σ̂Ip

and σ̂− = σ̂Ip
+ ∂I σ̂ ∆I, i.e., ∂I σ̂ =

(σ̂− − σ̂+)/∆I and δ̂I = ∆I/2.

IV. EMITTANCE OSCILLATION IN THE

DRIFT OF SPLIT PHOTOINJECTORS

In τ -space, the envelopes of bunch slices differ slightly
due to small variations in their initial values τ0 and τ ′

0.
Applying the emittance formula, we can write

ǫ ≃
√

W 2
τ

(∆τ0)2std.

(τ0)2avg.

+ W 2
τ ′

(∆τ ′

0)
2
std.

(τ ′

0)
2
avg.

, (14)

where

Wτ = (τ∂τ0
τ ′ − τ ′∂τ0

τ) τ0 , Wτ ′ =
(
τ∂τ ′

0
τ ′ − τ ′∂τ ′

0
τ
)
τ ′

0.
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The quantities in parentheses need to be evaluated for
the average envelope.

To calculate the two derivatives in Wτ , we take the
partial derivative of Eq. (5) with respect to τ0, which
gives

− s

τ2
w

∂τw

∂τ0

+
1

τ ′

0

∂(τ0/τw)

∂τ0

=
1

τ ′

∂(τ/τw)

∂τ0

. (15)

On the left-hand side, the first term equals −s/τwτ0 and
the second term vanishes. On the right-hand side, we
can either write it as a function of ∂τ0

τ or replace τ/τw

with eτ ′2/2 to get a function of ∂τ0
τ ′. These lead to the

necessary expressions

∂τ0
τ =

τ − τ ′s

τ0

and ∂τ0
τ ′ = − s

τ0τ
. (16)

Therefore, Wτ can be written as

Wτ = (τ ′2 − 1)s − ττ ′, (17)

which is a function of the envelope of the central slice.
Similarly, we have

∂τ ′

0
τ = τ0τ

′ − τ ′

0(τ − τ ′s) and ∂τ ′

0
τ ′ =

τ0 + τ ′

0s

τ
, (18)

and Wτ ′ can be written as

Wτ ′ = τ0τ
′

0(1 − τ ′2) − τ ′

0
2Wτ . (19)

Equations (14), (17), and (19), and the solution for τ
provide an analytical expression for the emittance.

Figure 2 illustrates the functions Wτ and Wτ ′ , their
absolute values, as well as the root of their square sum.
We see that |Wτ | and |Wτ ′ | start at the same value since
Wτ (0) = −Wτ ′(0) = −τ0τ

′

0. Furthermore, |Wτ | has two
minima while |Wτ ′ | has one. From W ′

τ = 2[(τ ′/τ)s−1] =
0, it is clear that the function Wτ has a minimum
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FIG. 2: Functions Wτ in red and W
τ
′ in blue, with their

absolutes in heavier stroke. The green curve is the root of
square sum of these two functions. The initial τ0 and τ

′

0 are
0.47 and -0.65, respectively.
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FIG. 3: Emittance (in τ -space) oscillation in the drift of a
SPARC photoinjector design. The dotted line is the numeri-
cal tracking result. The blue line is the contribution from τ0

variation only, which is proportional to |Wτ |. The red line
includes contributions from both τ0 and τ

′

0 variations. The
green line is computed using the approximate envelope solu-
tion given in Eq. (7).

Wmin
τ = −s at s = τ/τ ′. Since τ0 > 0 and τ ′

0 < 0,
Wτ starts from a positive value, reaches a negative mini-
mum value, then becomes positive again and approaches
τ ′2s. Therefore, |Wτ | generally has two minima where
Wτ crosses zero and one local maximum that is propor-
tional to s. In other words, |Wτ | has a generic W-shaped
oscillation with double minima, a feature of emittance
oscillation observed in the drift of split photoinjectors.
Other the other hand, Wτ ′ starts from a negative value
and crosses zero once, thus |Wτ ′ | only has one minimum.

As a concrete example, we show the emittance oscilla-
tion in the drift of a SPARC photoinjector design, which
is similar to the LCLS design. Figure 3 shows the re-
sult. The blue curve is the τ -space emittance due to τ0

variations that is proportional to |Wτ |, which has two
minima at zero crossing as discussed above. With the
additional contribution from Wτ ′ , the minima are raised
from zeros and smoothed. The total emittance based
on Eq. (14) is the red line, which agrees reasonably well
with the numerical tracking result (the dots). The dif-
ference could be due to the neglected correlation (with
a coefficient 0.23) between variations in τ0 and τ ′

0. This
example demonstrates our understanding of the “double-
minimum” feature in the emittance oscillation.

It is, however, clearly possible to have only one mini-
mum in the emittance oscillation in the case where the
variation in τ ′

0 (and thus Wτ ′) is more significant. For
example, if the τ0 variation in the above example is four
times smaller, the emittance oscillation will be as shown
in Fig. 4. Such a behavior could be those observed in
split photoinjectors with an ellipsoidal bunch profile [6].

Finally we remark that the matching point into a
booster should be at the beam waist, where σ′ = 0, a
condition required by the invariant envelopes. The lo-
cal emittance maximum in general does not have to be
located at the beam waist.
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FIG. 4: Emittance oscillation with τ0 variations four times
smaller than in the previous SPARC example.
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